Contribution of Na(+)-K(+)-Cl(-) cotransporter to high-[K(+)](o)- induced swelling and EAA release in astrocytes.

نویسندگان

  • Gui Su
  • Douglas B Kintner
  • Dandan Sun
چکیده

We hypothesized that high extracellular K(+) concentration ([K(+)](o))-mediated stimulation of Na(+)-K(+)-Cl(-) cotransporter isoform 1 (NKCC1) may result in a net gain of K(+) and Cl(-) and thus lead to high-[K(+)](o)-induced swelling and glutamate release. In the current study, relative cell volume changes were determined in astrocytes. Under 75 mM [K(+)](o,) astrocytes swelled by 20.2 +/- 4.9%. This high-[K(+)](o)-mediated swelling was abolished by the NKCC1 inhibitor bumetanide (10 microM, 1.0 +/- 3.1%; P < 0.05). Intracellular (36)Cl(-) accumulation was increased from a control value of 0.39 +/- 0.06 to 0.68 +/- 0.05 micromol/mg protein in response to 75 mM [K(+)](o). This increase was significantly reduced by bumetanide (P < 0.05). Basal intracellular Na(+) concentration ([Na(+)](i)) was reduced from 19.1 +/- 0.8 to 16.8 +/- 1.9 mM by bumetanide (P < 0.05). [Na(+)](i) decreased to 8.4 +/- 1.0 mM under 75 mM [K(+)](o) and was further reduced to 5.2 +/- 1.7 mM by bumetanide. In addition, the recovery rate of [Na(+)](i) on return to 5.8 mM [K(+)](o) was decreased by 40% in the presence of bumetanide (P < 0.05). Bumetanide inhibited high-[K(+)](o)-induced (14)C-labeled D-aspartate release by ~50% (P < 0.05). These results suggest that NKCC1 contributes to high-[K(+)](o)-induced astrocyte swelling and glutamate release.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Astrocytes from Na(+)-K(+)-Cl(-) cotransporter-null mice exhibit absence of swelling and decrease in EAA release.

We reported previously that inhibition of Na(+)-K(+)-Cl(-) cotransporter isoform 1 (NKCC1) by bumetanide abolishes high extracellular K(+) concentration ([K(+)](o))-induced swelling and intracellular Cl(-) accumulation in rat cortical astrocytes. In this report, we extended our study by using cortical astrocytes from NKCC1-deficient (NKCC1(-/-)) mice. NKCC1 protein and activity were absent in N...

متن کامل

Release of [3H]-D-aspartate from primary astrocyte cultures in response to raised external potassium.

There are significant Ca2+-independent increases in extracellular glutamate and aspartate during various CNS insults such as ischemia and anoxia. However, the cellular sources of such presumed nonvesicular excitatory amino acid (EAA) release have not been established. To further explore potential mechanisms and sites for EAA release, we studied the release of preloaded [3H]-D-aspartate from pri...

متن کامل

Neurobiology of Disease Na–K–Cl Cotransporter-Mediated Intracellular Na Accumulation Affects Ca Signaling in Astrocytes in an In Vitro Ischemic Model

Na–K–Cl cotransporter isoform 1 (NKCC1) plays an important role in maintenance of intracellular Na , K , and Cl levels in astrocytes. We propose that NKCC1 may contribute to perturbations of ionic homeostasis in astrocytes under ischemic conditions. After 3– 8 hr of oxygen and glucose deprivation (OGD), NKCC1-mediated Rb influx was significantly increased in astrocytes from NKCC1 wild-type (NKC...

متن کامل

Functional interaction of the K-Cl cotransporter (KCC1) with the Na-K-Cl cotransporter in HEK-293 cells.

We have studied the regulation of the K-Cl cotransporter KCC1 and its functional interaction with the Na-K-Cl cotransporter. K-Cl cotransporter activity was substantially activated in HEK-293 cells overexpressing KCC1 (KCC1-HEK) by hypotonic cell swelling, 50 mM external K, and pretreatment with N-ethylmaleimide (NEM). Bumetanide inhibited 86Rb efflux in KCC1-HEK cells after cell swelling [inhi...

متن کامل

Effects of estradiol on ischemic factor-induced astrocyte swelling and AQP4 protein abundance.

In the early hours of ischemic stroke, cerebral edema forms as Na, Cl, and water are secreted across the blood-brain barrier (BBB) and astrocytes swell. We have shown previously that ischemic factors, including hypoxia, aglycemia, and arginine vasopressin (AVP), stimulate BBB Na-K-Cl cotransporter (NKCC) and Na/H exchanger (NHE) activities and that inhibiting NKCC and/or NHE by intravenous bume...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 282 5  شماره 

صفحات  -

تاریخ انتشار 2002